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Abstract

Purpose – The purpose of this article is to show the gains that can be made if researchers were to use gain-
probability (G-P) diagrams.
Design/methodology/approach – The authors present relevant mathematical equations, invented
examples and real data examples.
Findings –G-P diagrams provide a more nuanced understanding of the data than typical summary statistics,
effect sizes or significance tests.
Practical implications –Gain-probability diagrams provided amuch better basis formaking decisions than
typical summary statistics, effect sizes or significance tests.
Originality/value – G-P diagrams provide a completely new way to traverse the distance from data to
decision-making implications.
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1. Introduction
Consider a medical scenario implying a government financing decision. Suppose researchers
invent amedicine to treat a disease. Should the government invest to render themedicinemore
widely available to its citizens? At present, a widely accepted procedure would be to perform a
significance test to determine if the medicine is effective at a statistically significant level. If so,
thatwould constitute a reason tomake the investment; if not, the governmentwould not invest.
However, significance testing is a poor way to evaluate the effectiveness of the medicine. It is
quite possible for a medicine not to be effective, but nevertheless achieve statistical
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significance, if the sample of cases is sufficiently large. This is because statistical significance
depends on two items: the size of the effect and the sample size. It is possible for a sufficiently
large sample size to compensate for even an extremely small effect. The p-values upon which
significance testing depends confound the effect sizes researchers obtainwith the sample sizes
they collect. In fact, McQuitty (2004, 2018) famously argued against too large sample sizes on
the grounds that they ensure statistical significance even when there is not much of an effect.
Of course, a problemwith this argument is that statistical significance is not the onlymatter of
concern. There is the much more important issue of the extent to which sample sizes are
sufficiently large to engender confidence that the sample statistics provide good estimates of
populationparameters. The larger the sample size, the better the estimate. Thus, from the point
of view of estimation, McQuitty’s famous advice is contraindicated. In addition, the fact that
the advice was so well received by business and economics researchers and cited over 1,000
times and received an accolade by Journal ofGlobal Scholars ofMarketing Science, points to one
of many problems with significance testing thinking (Trafimow et al., 2021). There have been
many criticisms of significance testing, including several reviews (Hubbard, 2016; Ziliak and
McCloskey, 2016; Trafimow, 2019) and 43 articles in the 2019 special issue of The American
Statistician, the highly respected journal of The American Statistical Association. Because the
disadvantages of significance testing have been covered so extensively, there is no point in
rehashing them here. Rather, the present goal is to present a more useful alternative.

In the medical scenario, there are many factors to consider. These include the seriousness
of the disease, the cost of the medicine andmany others. In addition, and crucially, there is the
issue of how well the medicine works. Put in the form of a question, what is the probability
that a randomly selected personwho takes themedicine will be better off, or worse off, and by
how much, with the medicine than without it?

Nor must we restrict ourselves to economics issues pertaining to medicine. If an economic
intervention is proposed to increase people’s living space, what is the probability that
a randomly selected person will be better off, or worse off, and by howmuch living space, with
the intervention than without it? Or if a government wishes to institute a policy to increase
income in a poor area,what is the probability that a personwill be better off, orworse off, andby
howmuch income,with the newpolicy thanwithout it? The issue of probabilities of being better
off, or worse off, by varying degrees, is relevant to many potential economics applications.

To estimate the probability of being better off, or worse off, by varying degrees, with the
intervention or policy change than without it, it is necessary to look carefully at the data to
determine the distribution. We will consider two families of distributions: skew normal
distributions, which include normal distributions, and delta log-skew-normal (LSN)
distributions, which include lognormal distributions. The subsequent section includes
crucial equations, with subsections for skew normal and delta LSN distributions. Following
that, we provide examples of how to use the equations to construct gain-probability (G-P)
diagrams to draw conclusions far beyond that which significance tests allow (Tong et al.,
2022; Trafimow et al., 2022; Wang et al., 2022).

2. Probability of being better off or worse off by how much? Skew normal
distributions
Whereas normal distributions have two parameters, mean μ and standard deviation σ; skew
normal distributions have three parameters. The location ξ replaces the mean, the scale ω
replaces the standard deviation, and there is a shape (or skewness) parameter α. When the
shape parameter equals 0 the distribution is normal, and the location equals themean and the
scale equals the standard deviation. But when the shape parameter does not equal 0,
the location does not equal the mean and the scale does not equal the standard deviation. In
symbols, when α5 0, ξ5 μ andω5 σ; but when α≠ 0, ξ≠ μ andω≠ σ. The family of normal
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distributions is a subset of the family of skew normal distributions. Thus, the family of skew
normal distributions is more generally applicable than the family of normal distributions.

Let us now derive the probability that a randomly chosen person from one skew normal
population has a higher score on the dependent variable than a randomly chosen person from
another skew normal population. We will assume dependent populations at any level of
correlation between�1 andþ1, with independent populations (correlation5 0) as a special case.

D2.1. Azzalini and Valle (1996) A random vector X ¼ ðX1; . . . ;XkÞ0 is said to have an k-
dimensional multivariate skew normal distribution with the vector of location

parameter μ ¼ ðμ1; . . . ; μkÞ0 ∈Rk
, the scale parameter of the positive definite

matrix Σ, and the vector of skewness (shape) parameters α ¼ ðα1; . . . ; αkÞ0, denoted
as X ∼ SNk(μ, Σ, α), if its density function (pdf) is given by

fXðxÞ ¼ 2fkðx; μ;ΣÞΦ α0Σ−1=2ðx� μÞ� �
; (2.1)

where fk(x; μ, Σ) is the density of the k-dimensional multivariate normal distribution Nk(μ, Σ)
with mean μ and covariance matrix Σ, andΦ(z) is the cumulative distribution function (cdf) of
the standard normal random variable Z∼N(0, 1).Here x0 is the transpose of the vector x∈Rk

.

2.1 Calculation of δab 5 P(Z > 0) in independent distributions
Aswementioned above, LetX∼ SN(ξ1,ω1, α1),Y∼ SN(ξ2,ω2, α2) andwe assume thatX andY
are independent. We want to obtain the distribution of the linear combination,
Z 5 X þ aY þ b, of X and Y for specified a∈R and b∈R and then calculate
δab 5 P(Z > 0). We need to find the distribution of Z first, which is given below.

There are two advantages of using Z 5 X þ aY þ b. Both advantages stem from the
possibility that a researcher might be interested in more than simply a probabilistic
advantage for one group over another. A researcher might be interested in the probabilities of
being better off, or worse off, to varying degrees. The equation provides two ways to assess
this. One way is by setting a5 �1 and varying b, to obtain the probability that a randomly
selected person from one condition will score higher than a randomly selected person from
another condition, by the amount the researcher specifies by setting b to that value. This is the
most straightforward advantage.

A second advantage is that the equation provides a way to assess the probability of being
better off, or worse off, by varying degrees, in terms of multiples. For example, what is the
probability that a randomly selected person from one group will score twice as much, thrice
as much and so on, as a randomly selected person from the other group? The equation facilitates
such an assessment. The researcher merely sets b5 0 and lets a vary at multiples of interest.

Theorem 2.1. Let X ∼ SNðξ1;ω2
1; α1Þ, Y ∼ SNðξ2;ω2

2; α2Þ. First we assume that two skew
normal populations are independent. Then the probability density function
(pdf) of Z 5 X þ aY þ b is

fZ ðzÞ ¼ cf
�
z; ν; τ2

�
Φ2½Bðz� νÞ;02;Δ�; (2.2)

where

c ¼ Φ−1
2

�
02;02;Δþ τ2BB0�; ν ¼ ξ1 þ aξ2 þ b; τ2 ¼ ω2

1 þ a2ω2
2; B ¼ d

0�τ2;
02 ¼ 0

0

� �
; Δ ¼ 1þ α2

1 0

0 1þ α2
2

 !
� dd0

τ2
; d ¼ α1ω1

aα2ω2

� �
:
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Here f(z; ν, τ2) is the pdf of the normal distribution N(ν, τ2) with mean ν and variance τ2, and
Φ2(u; 02, Δ) is the cumulative distribution function (cdf) of the bivariate normal distribution
with mean vector 02 and covariance Δ.

The proof of Theorem 2.1 is given inAppendix. Note that the pdf of Z given inEquation (2.2) is
the special case of the closed skew normal density. For details of closed skew normal
distributions, see Gupta et al. and Zhu et al.

Now we can compute the probability P(Z > 0), which is given by

δab ¼ PrðZ > 0Þ ¼
Z ∞

0

cf
�
z; ν; τ2

�
Φ2½Bðz� νÞ;02;Δ�dz: (2.3)

Density curves of Z for different parameters and their corresponding P(Z > 0) are given in
Figures 1 and 2, respectively. These values can be instantiated into the equations presented
earlier, but there is an easier way too. We provide a freely available online calculator at
https://probab.shinyapps.io/inde_prob/

2.2 Calculation of δρab 5 P(U > 0) in dependent distributions

Now we consider the bivariate skew normal random vector X ¼ ðX1;X2Þ0 ∼ SN2ðξ;Σ;αÞ,
with location parameter ξ, scale parameter Σ and skewness parameter α given by

ξ ¼ ξ1
ξ2

� �
; Σ ¼ ω2

1 ρω1ω2

ρω1ω2 ω2
2

 !
; α ¼ α1

α2

� �
:

Then we have the following result and its proof.

Theorem 2.2. Let X ∼ SN2(ξ, Σ, α) given above and consider U 5 X1 þ aX2 þ b with
a; b∈R. Then the pdf of U is

Figure 1.
The density of Z when
location parameters of
both populations equal
0, the scale parameters
for first and second
population equal 1 and
2 respectively
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fU ðuÞ ¼ 2f
�
u; ξ1 þ aξ2 þ b;ω2

1 þ a2ω2
2 þ 2aρω1ω2

�
3Φ α*

ðu� ξ1 � aξ2 � bÞ�
ω2

1 þ a2ω2
2 þ 2aρω1ω2

�1=2
" #

;
(2.4)

where

α* ¼
α1d1 þ α2d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� α2
1 � α2

2Þk2σ2 � ðα1d1 þ α2d2Þ2
q

with d1 ¼ ω2
1 þ ω1ω2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
þ aρÞ, d2 ¼ aω2

2 þ ω1ω2ða
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
− ρÞ,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

1 þ ω2
2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
ω1ω2

q
and σ2 ¼ ω2

1 þ a2ω2
2 þ 2aρω1ω2.

The proof of Theorem 2.2 is given in Appendix.
The probability δρab 5 P(U > 0) is given by

δρab ¼ PðU > 0Þ ¼
Z ∞

0

fU ðuÞdu: (2.5)

Density curves ofU for different parameters and their corresponding probability P(U> 0) are
given in Figures 3 and 4, respectively. For example, in Figure 3, we can see that the density
curves are affected by the location parameter ξ2 5 0, 2, 4, 2 with other parameters specified
and ρ5 0.25, together with their corresponding probabilities P(U > 0)5 0.433816, 0.566184,
0.226627, 0.10565, respectively. We provide a different online calculator, still freely available
online at https://probab.shinyapps.io/ProbU/

Figure 2.
The density of Z when
location parameters for

first and second
population equal �2

and 0 respectively, the
scale parameters for

first and second
population equal 1 and

2 respectively
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Figure 3.
The density of U when
location parameters of
the first population
equal 0, the scale
parameters for first
and second population
equal 1 and 2
respectively

Figure 4.
The density of U when
location parameters of
the first and second
population equal 0 and
4, the scale parameters
for first and second
population equal 1 and
2 respectively
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2.3 Estimation of δab 5 P(Z > 0) and δρab 5 P(U > 0)
The above two theorems imply that if the location, scale and shape parameters are known
in two populations, one can calculate the probabilities δab 5 P(Z > 0) and δρab 5 P(U > 0).
But in most situations in real life the population parameters are not known. Thus
estimating δab and δρab is necessary to be studied. The parametric estimation of P(X>Y) for
normal distributions in the context of probabilistic environmental risk assignment was
discussed by Jacobs et al. Here, we consider the method of moment estimator (MME) and
maximum likelihood estimator (MLE). The estimators obtained in this two ways are

denoted by bδMME

ab and bδMLE

ab respectively.
Method of moment estimator (MME) Equation (2.6), below, relates location to mean

and scale to standard deviation.

ξ ¼ μ�
ffiffiffi
2

π

r
δω and ω2 ¼ σ2 1� 2

π
δ2

� �−1

; (2.6)

where δ ¼ α=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
. To obtain parameter estimators from samples, it is necessary to

obtain an estimate of delta δ, which is the moment estimate bδ in Equation (2.7) below.

jbδj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
2

���bγ1j23���bγ1j23 þ ðð4� πÞ=2Þ23

vuuuut (2.7)

wherebγ1 is the sample skewness and the sign ofbδ is the same as the sign ofbγ1. In turn, it is easy
to obtain an estimate of the shape parameter α using Equation (2.8):

bα ¼
bδffiffiffiffiffiffiffiffiffiffiffiffi
1� bδ2q : (2.8)

Rewriting Equation (2.6) in terms of sample estimates, as opposed to population parameters,
renders Equation (2.9).

bξ ¼ X �
ffiffiffi
2

π

r bδbω and bω2 ¼ S2 1� 2

π
bδ2� �−1

: (2.9)

Then we can obtain the bδMME

ab by substituting the MMEs of ξ1, ξ2, ω1, ω2, α1 and α2 in
Equation (2.3).

Maximum likelihood estimator (MLE) The log-likelihood function for the skew
normal distribution is given by

logðLÞ ¼ n log
2

ω

� �
� n

2
logð2πÞ � 1

2

Xn
i¼1

xi � ξ

ω

� �2

þ
Xn
i¼1

log Φ α
xi � ξ

ω

� �� �
(2.10)

To derive the MLEs of the parameters in skew normal distribution, we take the partial
derivatives of the lnL functions with respect to parameters of interest and equal them to zero.
Then the corresponding MLEs are obtained by solving the following equations:
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logL

ξ
¼
Xn
i¼1

xi � ξ

ω

� �
� α

Xn
i¼1

f α
xi � ξ

ω

� �
Φ α

xi � ξ

ω

� � ¼ 0;

logL

ω
¼ −nþ

Xn
i¼1

xi � ξ

ω

� �2

� α
Xn
i¼1

f α
xi � ξ

ω

� �
Φ α

xi � ξ

ω

� � xi � ξ

ω

� �
¼ 0;

logL

α
¼
Xn
i¼1

f α
xi � ξ

ω

� �
Φ α

xi � ξ

ω

� � xi � ξ

ω

� �
¼ 0:

(2.11)

By the invariance property of MLEs, we obtain bδMLE

ab by substituting the MLEs of ξ1, ξ2, ω1,
ω2, α1 and α2 in Equation (2.3).

To derive bδMME

ρab and bδMLE

ρab under matched data setting, instead of estimating ξ1, ξ2, ω1, ω2,

α1 and α2 we estimate ξ* 5 ξ1 þ aξ2 þ b, σ2 ¼ c0Σc ¼ ω2
1 þ a2ω2

2 þ 2aρω1ω2 and

α* ¼ δ*ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ2

*

q
¼ α1d1 þ α2d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� α2
1 � α2

2

�
k2σ2 � ðα1d1 þ α2d2Þ2

q (2.12)

by using the samemethods as in the independent setting. Then by substituting theMMEs

and MLEs of ξ*, σ
2 and α* in Equation (2.5), we can get bδMME

ρab and bδMLE

ρab .

3. Probability of being better off or worse off by how much? Delta log-skew-
normal distributions
The log-normal distributions is very popular in both theory and applications of probability
and statistics. However, when modeling complex random phenomena in many applied
areas, there are a real need of more flexible models which extend the log-normal. Lin and
Stoyanov introduced the LSN distribution which is an extension for modeling positive data
using log-normal models. A positive random variable X is LSNly distributed (i.e. X ∼

LSN(μ, σ, α)) if the logarithm of X is skew normally distributed with location parameter μ,
scale parameter σ and slant parameter α. Let w(.) and Φ(.) be respectively probability
density function (pdf) and cumulative distribution function (cdf) of the standard normal
distribution, then we have that

fX ðxÞ ¼ 2

xσ
w
�
log x; μ; σ2

�
Φ α

log x� μ
σ

� �
; x > 0: (3.1)
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Density curves, fX(x), of X for parameters μ5 0, σ 5 0.5 with different values of α5�1, 0, 1
are given in Figure 5. FromFigure 5, we can see that the slant parameter α plays an important
role in LSN family. The mean and variance of X are respectively given by

EðXÞ ¼ 2 exp μþ σ2
�
2

	 

ΦðασÞ;

V ðXÞ ¼ 2 exp 2μþ σ2
	 


expðσ2ÞΦð2ασÞ � 2Φ2ðασÞ� �
:

The following is the definition of the multivariate LSN distribution.

D3.1. The random vector X 5 (X1, . . ., Xp)
0 is said to have a p-dimensional LSN

distribution if log X ∼ SNp(μ, Σ, α), the multivariate skew-normal distribution with
location parameter μ, scale matrix Σ, and the skewness parameter α, denoted byX∼

LSNp(μ, Σ, α). The pdf of X is

hðxÞ ¼
2Yp

i¼1
xi
jΣj−1

2 wpðlogx; μ;ΣÞΦ
�
α0Σ−1ðlogx� μÞ�; ifx∈Rpþ

;

0 otherwise;

8><>: (3.2)

where x5 (x1, . . ., xp)
0, log x5 (log x1, . . ., log xp)

0, andRpþ ¼ fxjxi > 0 for i ¼ 1; . . . ; pg.

Figure 5.
The density curves of

log-skew normal
distribution with μ5 0,
σ 5 0.5 and values of

α 5 1, 0, � 1
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Note that, in this paper, we only consider the family of the bivariate distributions, p5 2, for
both dependent and independent cases.

In life sciences it is common for data to contain a relatively large number of zeros. In many
real situations, it is appropriate to model such data using a LSN distribution for the positive
values, together with an additional probability mass at all zeros. This type of distribution is
commonly referred to as the delta LSN, defined below.

D3.2. The random variable X is said to have a delta-LSN distribution with parameters δ, μ,
σ, and α, denoted as X ∼ DLSN(δ, μ, σ2, α), if the pdf of X is given by

gX ðxÞ ¼
0 if x < 0;
δ if x ¼ 0;
ð1� δÞfX ðxÞ; if x > 0;

8<: (3.3)

where fX(x) is given in Equation (3.1). Similarly, the random vector ðX1;X2Þ0 is said to have a

bivariate delta LSN distribution with parameters δ ¼ ðδ0; δ1; δ2Þ0, μ, Σ, and α, denoted asX ∼

DLSN2(δ, μ, Σ, α) if its cdf of X is given by

PðX1 < 0;X2 < 0Þ ¼ 0; if x1 < 0; x2 < 0;
PðX1 ¼ 0;X2 ¼ 0Þ ¼ δ0; if x1 ¼ 0; x2 ¼ 0;
PðX1 ≤ x1;X2 ¼ 0Þ ¼ δ1Fðx1Þ; if x1 > 0; x2 ¼ 0;
PðX1 ¼ 0;X2 ≤ x2Þ ¼ δ2Gðx2Þ; if x1 ¼ 0; x2 > 0;

PðX1 ≤ x1;X2 ≤ x2Þ ¼ 1�
X2
i¼0

δi

 !
Hðx1; x2Þ; if x1 > 0; x2 > 0;

8>>>>>>><>>>>>>>:
(3.4)

where 0 ≤ δi < 1, i 5 0, 1, 2, and 1−
P2

i¼0δi > 0, F(x1) and G(x2) are the cdf’s of
X1 ∼LSNðμ1; σ2

1; α1ÞandX2 ∼LSNðμ2; σ2
2; α2Þ, respectively, andH(x1, x2) is the joint cdf ofX∼

LSN2( μ, Σ, α).

Note that the requirement of 1−
P2

i¼0δi > 0 is necessary as X ∼ LSN2(μ, Σ, α) is assumed.
Also if X1 and X2 are independent, then from Equation (3.4), we can obtain that

X1 ∼DLSN


δ*1; μ1; σ

2
1; α1

�
and X2 ∼DLSN



δ*2; μ2; σ

2
2; α2

�
with δ05 δ*1δ*2, δ15 (1� δ*1)δ*2, δ25 δ*1(1� δ*2) andH(x1, x2)5 F(x1)G(x2) for all x1, x2 > 0.

3.1 Linear combination of independent delta log-skew-normal distributions
Let X ∼DLSNðδ1; μ1; σ21; α1Þ, Y ∼DLSNðδ2; μ2; σ22; α2Þ and we assume that X and Y are
independent.Wewant to obtain the distribution of the linear combination, Z5Xþ aYþ b, ofX
and Y for specified constants, a ≠ 0 and b∈R; and then find P(Z > 0), the probability of Z > 0.

Theorem 3.1. Let X ∼DLSNðδ1; μ1; σ2
1; α1Þ, Y ∼DLSNðδ2; μ2; σ2

2; α2Þ and assume that X
and Y are independent. Then the pdf of Z 5 X þ aY þ b is

(i) for a < 0,

fZ ðzÞ ¼

Z ∞

z−b
a

fX ðz� ay� bÞfY ðyÞdy� 1

a
fY

z� b

a

� �
; if z < b;

δ1δ2 if z ¼ b;Z ∞

0

fX ðz� ay� bÞfY ðyÞdyþ fX ðz� bÞ; if z > b:

8>>>>>><>>>>>>:
(3.5)
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(ii) for a > 0,

fZ ðzÞ ¼

0 if z < b;

δ1δ2 if z ¼ b;Z z−b
a

0

fX ðz� ay� bÞfY ðyÞdyþ 1

a
fY

z� b

a

� �
þ fX ðz� bÞ; if z > b:

8>>>><>>>>: (3.6)

where fX(x), fY(y) are pdf’s of X when x > 0 and Y when y > 0, respectively.

The proof of Theorem 3.1 is given in Appendix. Note that if a5 0, then Z5 Xþ b so that we
only have the univariate case.

Now we can compute the probability P(Z > 0), which is given by.

(i) for a < 0,

PðZ > 0Þ ¼

Z ∞

0

Z ∞

0

fX ðz� ay� bÞfY ðyÞdydzþ
Z ∞

0

fX ðz� bÞdz; ifb < 0;Z ∞

b

Z ∞

0

fX ðz� ay� bÞfY ðyÞdydzþ
Z ∞

b

fX ðz� bÞdz

þ
Z b

0

Z ∞

z−b
a

fXðz� ay� bÞfY ðyÞdydz�
Z b

0

1

a
fY

z� b

a

� �
dz; ifbP0:

8>>>>>>>>><>>>>>>>>>:
(3.7)

(ii) for a > 0,

PðZ > 0Þ ¼

Z ∞

0

Z z−b
a

0

fX ðz� ay� bÞfY ðyÞdydzþ
Z ∞

0

1

a
fY

z� b

a

� �
dz

þ
Z ∞

0

fX ðz� bÞdz; ifb < 0;

Z ∞

b

Z z−b
a

0

fX ðz� ay� bÞfY ðyÞdydzþ
Z ∞

b

1

a
fY

z� b

a

� �
dz

þ
Z ∞

b

fX ðz� bÞdz; ifbP0:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(3.8)

Here is a link of shiny apps and its corresponding R code is available upon the request: https://
dlnprobability.shinyapps.io/dlsn_independent/.

3.2 Bivariate delta log-skew-normal distribution

Now we consider the bivariate delta LSN random vector X ¼ ðX1;X2Þ0 ∼DLSN2ðδ; μ;Σ;αÞ,
given by (3.4) with parameters given by

δ ¼
δ0
δ1
δ2

0@ 1A; μ ¼ μ1
μ2

� �
; Σ ¼ σ21 ρσ1σ2

ρσ1σ2 σ2
2

 !
; α ¼ α1

α2

� �
:

Then we have the following result and its proof is given in Appendix.
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Theorem 3.2. LetX ∼ DLSN2(δ, μ, Σ, α) given above and consider U5 X1þ aX2þ b with
constants a ≠ 0 and b∈R. Then the pdf of U is

(i) for a < 0

fU ðuÞ ¼

Z ∞

u−b
a

ð1� δ0 � δ1 � δ2Þhðu� ax2 � b; x2Þdx2 � δ2
a
g

u� b

a

� �
; if u < b;

δ0 if u ¼ b;Z ∞

0

ð1� δ0 � δ1 � δ2Þhðu� ax2 � b; x2Þdx2 þ δ1f ðu� bÞ; if u > b:

8>>>>>><>>>>>>:
(3.9)

(ii) for a > 0

fU ðuÞ ¼

0 if u < b;

δ0 if u ¼ b;Z u−b
a

0

ð1� δ0 � δ1 � δ2Þhðu� ax2 � b; x2Þdx2

þδ2
a
g

u� b

a

� �
þ δ1f ðu� bÞ; if u > b:

8>>>>>>>>><>>>>>>>>>:
(3.10)

where 0 ≤ δi < 1, i 5 0, 1, 2, and 1−
P2

i¼0δi > 0, f(x1) and g(x2) are the pdf’s of
X1 ∼LSNðμ1; σ2

1; α1Þand X2 ∼LSNðμ2; σ2
2; α2Þ, respectively, and h(x1, x2) is the joint pdf ofX∼

LSN2(μ, Σ, α).

Here is a link of shiny apps and its corresponding code is available upon the request: https://
dlnprobability.shinyapps.io/dlsn_dependent/.

4. Applications: invented examples
To explain the possibilities, we invented examples. First, we examine skew normal examples
and then lognormal examples.

4.1 Skew normal examples
Suppose an economist is interested in comparing salaries of males versus females in a
particular geographical area. In this geographical area, based on large samples of randomly
selected males and females, suppose the mean salaries are $45,000 for both males and
females, the standard deviations are $1,000 for each, with skews of 0.5 and�0.5 for males and
females, respectively. Because themean salary is the same formales and females, there seems
no reason to promote a policy change to redress inequality in salaries.

However, let us convert the foregoing statistics to estimates of skew normal parameters:
location, scale and shape. After making the conversion, the estimated locations are $43,947.79
and $46,052.21 for males and females, respectively; the estimated scales are $1,451.601 for both
males and females (the squared value is $2107144.694); and the estimated distribution shapes
are 2.173758 and� 2.173758 for males and females, respectively.We saw earlier that, going by
means, there is no relative advantage for males or females. However, we now see that going by
locations, there is a relative disadvantage for males relative to females. The difference inmeans
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implies a neutral policy whereas the difference in locations implies a policy to increase male
salaries to bring them to the level of female salaries. However, neither difference answers the
real question, which is: What is the probability of males being advantaged or disadvantaged,
relative to females and by how much? Fortunately, the foregoing skew normal mathematical
equations allow us to answer this question, especially with the aid of the program that can be
accessed via the following link: https://probab.shinyapps.io/inde_prob/.

Figure 6 contains a G-P diagram that provides the probabilities that males will be
advantaged (black bars) or disadvantaged (gray bars) relative to females. As will be seen
presently, G-P diagrams provide the advantage that researchers can assess probabilistic
advantages or disadvantages, at varying degrees of extremity. Note that each gray bar is
higher than its corresponding black bar, demonstrating a consistent advantage for females
over males. For example, the probability that a randomly selected male would have an
advantage of 0–500 is 0.134 whereas the probability that a randomly selected female would
have a similar advantage is 0.143. In general, there is asymmetry favoring females over
males. Thus, using skew normal statistics to construct a G-P diagram can lead to different
conclusions than remaining with normal statistics. Note, too, that if we perform a significance
test on the means, the typical t-test would come out consistent with the null hypothesis of no
difference whereas Figure 1 shows a very clear difference.

Or consider another example to illustrate the potential importance of seeming trivial
skewness. Consider the deductible for doctor visits based on two insurance companies labeled
INSURE-A and INSURE-B. For both insurance companies, the location is $60 and the scale is
$10 (squared scale is $100). The difference is that the skewness for INSURE-A is 0.10 whereas it
is�0.10 for INSURE-B. The small skewnessmagnitude is so small for both companies that the
distributions are very near normal, and typical statisticians and data analysts would treat

Figure 6.
The probability of

males or females being
better off, or worse off,

to varying degrees,
with respect to salaries
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the distributions as normal. The obvious conclusion is that the two insurance companies are
equivalent. However, constructing a G-P diagram suggests a very different conclusion.

Figure 7 shows that despite the two insurance companies having equivalent locations,
scales and skews seemingly only trivially different from 0, the G-P diagram shows that
a randomly selected doctor’s visit is much more likely to be varying degrees more expensive
with INSURE-A than with INSURE-B. Each black bar, representing INSURE-A resulting in
more expensive payments, is substantially higher than its corresponding gray bar,
representing INSURE-B resulting in more expensive payments. The G-P diagram is quite
asymmetric; the black bar (INSURE-A) probabilities are higher than corresponding gray bar
(INSURE-B) probabilities. Thus, if the goal is to reduce the expected payment amount, the G-P
diagram indicates INSURE-B is a substantially statistically better bet than is INSURE-A,
despite the seeming equivalence based on similar locations. More generally, Figure 7 shows
that seeming trivial skewness differences can have extreme consequences.

4.2 Lognormal examples
Consider time wasted per hour at work in two different industries. Suppose that time wasted
is lognormally distributed in companies in Business A and Business B. In Business A, the
mean time wasted is 11.373, the standard deviation is 2.888 and the variance is 8.342.
In Business B, themean is 11.078, the standard deviation is 12.376 and the variance is 153.158.
The effect size is 0.04, which is trivial, so the obvious conclusion is that type of business has
little to do with time wasted per hour. Too, with such a small effect size, a significance test
likely would come out insignificant with typical sample sizes.

Figure 7.
The probability of
being better off, or
worse off, by varying
degrees, with respect to
co-payments for doctor
visits
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However, let us now consider lognormal statistics. The log transformed mean and standard
deviation for Business A is 2.4 and 0.25 (variance is 0.0625), respectively. These values are 2.0
and 0.9 (variance is 0.81) for Business B. Thus, the probability that a randomly selected
person in Business A will waste more time than a randomly selected person in Business B is
approximately 0.67, despite the miniscule conventional effect size in the previous paragraph.
In addition, it is possible to construct a G-P diagram with more nuanced information.
One capability of G-P diagrams is that effects can be reported as multiples. For example, it is
possible to concern ourselves with the probability that time-wasting is twice, thrice, etc. that
in one business relative to the other. The G-P diagram renders clear that which would be
obscured otherwise; time-wasting is much more of a problem for Business A than for
Business B (see Figure 8).

Imagine two large cities, City A and City B and an economist is concerned with comparing
commuting times. Suppose commuting times are lognormally distributedand themean commuting
time for CityA is 41.264min, the standard deviation is 74.054 and the variance is 5484.041. For City
B, these values are 30.114, 33.641 and 1131.691, respectively.There seems an obvious advantage for
City B over City A in that the mean commute is shorter for City B than for City A by 11.15 min.

The mean of the logarithmically transformed distribution for City A is 3.0, the standard
deviation is 1.2 and the variance is 1.44. ForCityB, these values are 3.0, 0.90 and0.81, respectively.
The probability that a randomly selected person from City A would have a shorter commuting
time than a randomly selected person from City B is 0.50; despite appearances based on the
previous paragraph, there is no probabilistic advantage for CityA over City B.Moreover, the G-P
diagram is symmetric; as eachblack bar inFigure 9 is the same size as its correspondinggraybar,
there is no probabilistic advantage for either city, no matter the multiple under consideration.

Figure 8.
The probability of
being better off or

worse off, by differing
multiples
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Consider another example, using the same log normal parameter values as the previous
example, but with the addition of considering shape. Suppose that the shape parameter for
City A is 0.10 and the shape parameter for City B is�0.10. In that case, the probability that a
randomly selected person in City A would have a longer commuting tie than a randomly
selected person in City B is 0.54, not 0.50. And the probability that a randomly selected person
in City B would have a longer commuting time than a randomly selected person in City A is
0.46. Thus, in contrast to the previous example, the slight difference in shape parameters
leads to a clear probabilistic disadvantage for City A relative to City B. In addition, in contrast
to Figure 9 that is symmetrical, Figure 10 that illustrates the present example is asymmetric.

5. Application: real data
In the previous section, we examined invented examples to demonstrate the lessons that can
be learned by constructing G-P diagrams. In this section, we present analyses of real data.

5.1 NBA guards (2022–2023 regular season)
We downloaded data from the following website: https://www.espn.com/nba/stats/player/_/
season/2023/seasontype/2/table/defensive/sort/avgSteals/dir/desc. Among other types of
information, it contains data for minutes played by point guards and shooting guards. Let us
compare them using traditional normal statistics versus skew normal statistics.

The means for point guards and shooting guards are 24.0 and 19.8, respectively. The
standard deviations are 8.8 and 9.4, respectively. In addition, the skews are �0.3 and 0.2,
respectively. Thus, point guards average 4.2 more minutes per game than shooting guards.

Figure 9.
The probability of
being better off by
varying multiples, with
respect to commuting
times, depending
on city
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Wemight ask about how likely a randomly chosen point guard would average more minutes
than a randomly chosen shooting guard. Based on the difference in averages, wemight guess
that the probability that randomly chosen point guard would average more minutes than a
randomly chosen shooting guard would be greater than 0.50, but perhaps not too much more
than that. But rather than guess, let us run out the calculations.

As usual, the first step is to find the skew normal values for location, scale and shape. For
point guards these are 31.4, 11.5 (scale squared is 131) and �1.4, respectively. For shooting
guards, these are 13.1, 11.6 (scale squared is 134) and 1.1, respectively. Based on these values,
the probability that a randomly selected point guard would playmoreminutes per game than
a randomly selected shooting guard is 0.63. Figure 11 provides a G-P diagram. An interesting
aspect of the figure is that the middle two bars are not very far apart, thereby indicating that
at small amounts of difference in minutes played, there is only a slight probabilistic
advantage for point guards over shooting guards. However, comparing black against
gray bars at greater extremes indicates a strong probabilistic advantage for point guards
over shooting guards. The G-P diagram suggests amore subtle substantive story than does a
mere difference in means or difference in locations.

5.2 Living space for males versus females
Hyman et al. (2002) obtained data comparing living space for their male and female
participants, in square feet. The mean amount of living space for men is 2300 and
the standard deviation is 705. The mean amount of living space for women is 2186 and the
standard deviation is 671. The effect size isminiscule and not statistically significant: Cohen’s
d 5 0.04, t(564) < 1. However, the data are lognormally distributed and a G-P diagram

Figure 10.
Probability of being

better off or worse off,
by varying multiples,

with respect to
commuting times,

depending on city and
taking shape

parameters into
account
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suggests a very different conclusion. To commence, let us find the means and standard
deviations after a logarithmic transformation. The transformedmean and standard deviation
for males is 7.69 and 0.31 (variance 5 0.0961), respectively. The transformed mean and
standard deviation for females is 7.64 and 0.32 (variance 5 0.1024), respectively. Thus, the
probability that a randomly selected male will have more living space than a randomly
selected female is 0.54whereas the probability that a randomly selected femalewill havemore
living space than a randomly selected male is only 0.46, a more impressive difference than is
suggested by the Cohen’s d or the nonsignificant p-value.

For a more fine-grained analysis, Figure 12 provides the G-P diagram. Because it is
convenient to express gender effects with respect to living space in multiples, Figure 12 is in
terms of multiples. That is, the black bars provide the probabilities that a randomly selected
male will have 1.0 to 1.5 times as much living space as a randomly selected female, 1.5 to 2.0
times as much living space and so on. The gray bars provide analogous probabilistic
advantages for females. Each black bar is larger than its corresponding gray bar thereby
indicating that although the probabilistic advantage for males over females is not large, it is
not trivial either. Again, we see that a G-P diagram provides both more valid and more
nuanced conclusions than typical differences betweenmeans, Cohen’s d, or significance tests.

Consider precipitation in Buffalo for 306 days starting in June in 2019 versus 2020
[https://www.ncdc.noaa.gov/cdo-web/]. Because there are dayswhen there is no precipitation,
the data fall under the category of delta skew lognormal distributions. Thus, there are the
following bullet-listed summary parameter estimates for each year:

� locations are 2.8712 for 2019 and 2.8327 for 2020,

� squared scales are 3.884841 for 2019 and 3.806401 for 2020,

Figure 11.
Probability of varying
degrees of advantage
(or disadvantage) for
shooting guards or
point guards with
respect to minutes
played
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� shapes are �2.929 for 2019 and -3.019 for 2020 and

� probabilities of zeroes (lack of precipitation for a day) are 0.49346 for 2019 and 0.59150
for 2020.

This is an especially interesting example because (a) it engages all the parameters of delta skew
lognormal distributions and (b) ties are possible. A tie can occur if there is no precipitation on a
randomly selected day in 2019 or 2020. The probability of more precipitation on a randomly
selected day in 2019 than on a randomly selected day in 2020 is 0.404. The probability of more
precipitation on a randomly selected day in 2020 than ona randomly selectedday in 2019 is 0.304
and the probability of a tie is 0.292. Thus, there is a general probabilistic advantage for 2019 over
2020, assuming precipitation is positive. (If precipitation is negative, then there is a probabilistic
disadvantage for 2019 relative to 2020. However, we will assume that precipitation is positive.)

Figure 13 shows aG-P diagram. However, the diagram differs from the others because ties
are possible. The black bar in the middle shows the probability of ties. The dark gray bars
show the probability of more precipitation in 2019 than in 2020, by varying millimeters. And
the light gray bars show the probability ofmore precipitation in 2020 than in 2019, by varying
millimeters. The figure shows that the probabilistic advantage for 2019 over 2020 is clear
both at small amounts and at large ones.

6. Discussion
The G-P diagrams based on both invented and real data indicate important lessons for
economics researchers. One lesson is that both summary statistics and significance tests can

Figure 12.
Probability that males
or females are better

off, by varying
multiples, with respect
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be verymisleading. It is possible for a difference inmeans to hide that there is no probabilistic
advantage for either group over the other. However, it is possible, too, for a lack of difference
in means to hide a very sizable probabilistic advantage for one group over the other.
One solution is to use more appropriate summary statistics. For example, if the data are
obtained from a skew-normal distribution, locations, scales and shapes can be better than
means and standard deviations. However, even distribution-appropriate sample statistics
can be misleading. For instance, we have seen an example where the locations and scales of
two groups are the same and the difference in skews very small. Nevertheless, the G-P
diagram (Figure 7) indicated a very large probabilistic difference.

Although it is dramatic to show that traditional statistics and G-P diagrams can come to
opposing conclusions, G-P diagrams have another advantage. Specifically, G-P diagrams can
support subtle conclusions that cannot be addressed by either summary statistics or
significance tests. Figure 11 provides a nice case in point. It shows that at relatively small
differences in minutes played, there is only a miniscule probabilistic advantage for point
guards over shooting guards. But at more extreme differences in minutes played, the
probabilistic advantage for point guards increases substantially.

In conclusion, there is no need for economics researchers to constrain themselves by
depending solely on summary statistics and null hypothesis significance tests. As we have
seen, G-P diagrams provide opportunities to contradict the seeming implications of summary
statistics or null hypothesis significance tests. In addition, even in cases where there is no
contradiction, such as the data pertaining to minutes played by National Basketball
Association (NBA) point guards and shooting guards, G-P diagrams provide much more
nuanced information than do summary statistics and null hypothesis significance tests. We

Figure 13.
Probability that there
is a precipitation
advantage, by varying
degrees, for 2019 or
2020, or that there is no
advantage for either
year (black bar)
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hope and expect that future economics researchers will avail themselves of the potential
advantages to be enjoyed by exploiting the capabilities of G-P diagrams for providing subtle
probabilistic information about comparisons of interest.
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Appendix
Source(s): Appendix by authors

In this section, we provide detailed proofs of Theorem 2.1, 2.2, 3.1, Theorem 3.2.
A.1 . Proof of Theorem 2.1
The joint pdf of X ∼ SN(ξ1, ω1, α1) and Y ∼ SN(ξ2, ω2, α2) is

f ðx; yÞ ¼ 4f
�
x; ξ1;ω

2
1

�
f
�
y; ξ2;ω

2
2

�
Φ α1

x� ξ1
ω1

� �
Φ α2

y� ξ2
ω2

� �
:

Let Z5 Xþ aYþ b, Y5 Y, then X5 Z� aY� b, Y5 Y and it is easy to see that the Jacobian J of this
transformation is 1. Thus, we obtain the pdf of Z as
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where

ω* ¼
ω1ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 þ a2ω2

2

p and c ¼ aω2
2ðz� b� ξ1Þ þ ω2

1ξ
2
2

ω2
1 þ a2ω2

2

:

Let T ¼ y− c
ω
*
. Then Equation(A.1) will be
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with T ∼ N(0, 1). If we denote X1 ¼ α1

z− aðtω
*
þcÞ− ξ1 − b

ω1
and X2 ¼ α2

tω
*
þaþc− ξ2

ω2
, then ET_in Equation (A.2)

can be simplified as

ET Φ2ðX1; X2Þ0;0; I2
� � ¼ ET ½PðU1 ≤X1; U2 ≤X2jX1;X2Þ�

¼ PðU1 ≤X1; U2 ≤X2Þ
¼ PðU1 � X1 ≤ 0; U2 � X2 ≤ 0Þ;

(A.3)

where U1,U2 and T are independent standard normal random variables. Note that E(Ui� Xi)5�E(Xi)
and Var(Ui � Xi) 5 1 þ Var(Xi) for i 5 1, 2. Additionally,

CovðU1 � X1; U2 � X2Þ ¼ CovðX1; X2Þ ¼
−aα1α2ω2

*

ω1ω2

:

Therefore, the joint distribution of ðU1 −X1; U2 −X2Þ0 is
ðU1 � X1; U2 � X2Þ0 ∼N2ðμ; ΣJ Þ;

where
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μ ¼
�α1

z� ac� ξ1 � b

ω1

�α2

c� ξ2
ω2

0BBB@
1CCCA and ΣJ ¼

1þ α2
1

a2ω2

*

ω2
1

�aα1α2ω2

*

ω1ω2

�aα1α2ω2

*

ω1ω2

1þ α2
2

ω2

*

ω2
2

0BBBB@
1CCCCA:

Then Equation(A.3) can be written to be

ET Φ2ðX1; X2Þ0;0; I2
� � ¼ Φ2ð−μ;0;ΣJ Þ;

and therefore, Equation (A.1) will be

f1;2ðzÞ ¼ 4f
�
z; ξ1 þ aξ2 þ b;ω2

1 þ a2ω2
2

�
Φ2½Bðz� ðξ1 þ aξ2 þ bÞÞ;02;ΣJ �; (A.4)

where B ¼ α1ω1

ω2
1
þa2ω2

2

; aα2ω2

ω2
1
þa2ω2

2


 �0
.

A.2 . Proof of Theorem 2.2
Let c5 (1,a)0, we are trying to find the distribution ofU5 X1þ aX2þ b5 c0Xþ b. First we derive the
moment generating function (mgf) of U:

MU ðtÞ ¼ E½expðtc0X þ tbÞ�

¼ 2 exp tðc0ξ þ bÞ þ 1

2
t2c0Σc

� �
Φ
�
δ0Σ1=2ct

�
:

(A.5)

It is easy to obtain that c0ξ þ b 5 ξ1 þ aξ2 þ b and σ2 ¼ c0Σc ¼ ω2
1 þ a2ω2

2 þ 2aρω1ω2. From Wang
et al.,

Σ1=2 ¼
ω2

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

q
ω1ω2

k

ρω1ω2

k

ρω1ω2

k

ω2
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

q
ω1ω2

k

2666664

3777775;

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

1 þ ω2
2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
ω1ω2

q
:

Thus, δ* 5 δ0Σ1/2c(c0Σc)�1/2. By equation (2.1), we obtain that U ∼ SN(ξ1 þ aξ2 þ b, σ2, α*) with

α* ¼ δ*ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ2

*

q
¼ α1d1 þ α2d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� α2
1 � α2

2

�
k2σ2 � ðα1d1 þ α2d2Þ2

q ;

(A.6)

where d1 ¼ ω2
1 þ ω1ω2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
þ aρÞ and d2 ¼ aω2

2 þ ω1ω2ða
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
þ ρÞ. Then the density ofU is

given by
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fU ðuÞ ¼ 2fðu; c0ξ þ b; σ2
�
Φ α*

�
u� b

0ξ � b
�

σ

� �
(A.7)

¼ 2f
�
u; ξ1 þ aξ2 þ b;ω2

1 þ a2ω2
2 þ 2aρω1ω2

�
3 Φ α*

ðu� ξ1 � aξ2 � bÞ�
ω2

1 þ a2ω2
2 þ 2aρω1ω2

�1=2
" #

: (A.8)

A.3 . Proof of Theorem 3.1
The joint pdf of X ∼Δðδ1; μ1; σ21Þ and Y ∼Δðδ2; μ2; σ2

2Þ is

gðx; yÞ ¼
δ1δ2 ifx ¼ 0; y ¼ 0
ð1� δ1Þð1� δ2ÞfX ðxÞfY ðyÞ ifx > 0; y > 0
δ1ð1� δ2ÞfY ðyÞ ifx ¼ 0; y > 0
δ2ð1� δ1ÞfX ðxÞ ifx > 0; y ¼ 0

8>><>>: (A.9)

where fX(x), fY(y) are the probability distribution functions of X when x > 0 and Y when y > 0,
respectively.

(1) For x>0, y> 0, let Z5Xþ aYþ b,Y5Y so thatX5 Z� aY� b,Y5Y. It is easy to see that the
Jacobian J of this transformation is 1. Thus, the pdf of Z as

fZ ðzÞ ¼
Z

fX ðz� ay� bÞfY ðyÞdy;

(2) For x 5 0, y > 0, we have x 5 0, Z 5 aY þ b and the pdf of Z is

fZ ðzÞ ¼ δ1ð1� δ2ÞfY z� b

a

� �
1

jaj:

(3) Similarly, for x > 0, y 5 0, the pdf of Z is

fZ ðzÞ ¼ δ2ð1� δ1ÞfX ðz� bÞ:
Note that the sign of a determines the range of Z. If a < 0, then the pdf of Z 5 X þ aY þ b is

fZ ðzÞ ¼

Z ∞

z−b
a

fX ðz� ay� bÞfY ðyÞdy� 1

a
fY

z� b

a

� �
ifz < b

δ1δ2 ifz ¼ bZ ∞

0

fX ðz� ay� bÞfY ðyÞdyþ fX ðz� bÞ ifz > b:

8>>>>>><>>>>>>:
(A.10)

Also if a > 0, the pdf of Z is given by

fZ ðzÞ ¼
δ1δ2 ifz ¼ bZ z−b

a

0

fX ðz� ay� bÞfY ðyÞdyþ 1

a
fY

z� b

a

� �
þ fX ðz� bÞ ifz > b

8><>: (A.11)

so that desired result follows.
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A.4 . Proof of Theorem 3.2
Note that from Equation (3.4), we know that the joint pdf of ðX1;X2Þ0 ∼Δ2ðδ; μ;ΣÞ is given by

gXðx1; x2Þ ¼
δ0 ifx1 ¼ 0; x2 ¼ 0
δ1f ðx1Þ ifx1 > 0; x2 ¼ 0
δ2gðx2Þ ifx1 ¼ 0; x2 > 0
ð1� δ0 � δ1 � δ2Þhðx1; x2Þ ifx1 > 0; x2 > 0;

8>><>>: (A.12)

where f(x1), g(x2) are pdf’s of log-normal distributions LNðμ1; σ2
1Þ and LNðμ2; σ22Þ, respectively, and h(x1,

x2) is the joint pdf of ðX1;X2Þ0 ∼LN2ðμ;ΣÞ.
(1) For x1 > 0, x2 > 0, letU5X1þ aX2þ b,X25X2, thenX15U� aX2� b,X25X2. It is easy to see

the Jacobian J of this transformation is 1. Thus, we obtain the marginal pdf of U as

fU ðuÞ ¼
Z

ð1� δ0 � δ1 � δ2Þhðu� ax2 � b; x2Þdx2;

(2) For x15 0, x2 > 0, let x15 0,U5 aX2þ b and the Jacobian of this transformation is 1/a so that
the pdf of U is

fUðuÞ ¼ δ2g
u� b

a

� �
1

jaj:

(3) Similarly for x1 > 0, x2 5 0, the pdf of U is

fU ðuÞ ¼ δ1f ðu� bÞ:
Therefore the pdf of U 5 X1 þ aX2 þ b is, for a < 0,

fU ðuÞ ¼

Z ∞

u−b
a

ð1� δ0 � δ1 � δ2Þhðu� ax2 � b; x2Þdx2 � δ2
a
g

u� b

a

� �
ifu < b

δ0 ifu ¼ bZ ∞

0

ð1� δ0 � δ1 � δ2Þhðu� ax2 � b; x2Þdx2 þ δ1f ðu� bÞ ifu > b

8>>>>>><>>>>>>:
(A.13)

and for a > 0, the pdf of U is

fUðuÞ¼
δ0 ifu¼ bZ u−b

a

0

ð1�δ0�δ1�δ2Þhðu�ax2�b;x2Þdx2þδ2
a
g

u�b

a

� �
þδ1f ðu�bÞ ifu> b:

8><>:
(A.14)

Thus the proof of Theorem 3.2 is completed.
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